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Dimensionality reduction techniques such as principal component

analysis (PCA)arepowerful tools for theanalysisofhigh-dimensional

data. In hyperspectral image analysis, nonnegativity of the data can

be taken into account, leading to an additive linear model called

nonnegative matrix factorization (NMF), which improves inter-

pretability of the decomposition. Recently, another technique based

on underapproximations (NMU) has been introduced, which allows

the extraction of features in a recursive way, such as PCA, but pre-

serving nonnegativity, such as NMF. Moreover, in some situations,

NMU is able to detect automatically the materials present in the

scene being imaged. However, for difficult hyperspectral datasets,

NMU can mix some materials together, and is therefore not able to

separate all of themproperly. In this paperwe introduce sparseNMU

by adding a sparsity constraint on the abundance matrix and use it

to extract materials individually in a more efficient way than NMU.

This is experimentally demonstrated on the HYDICE images of the

San Diego airport and the Urban dataset.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Hyperspectral images are digital images, often taken either from an airplane or satellite, in which

each pixel has not just the usual three visible bands of light (red at 650nm, green at 550nm, and blue
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at 450nm), but on the order of hundreds of wavelengths so that spectroscopy can be conducted on the

materials on the ground. The user is then able to identify, for instance, the species of trees and other

vegetation, crop health, mineral and soil composition, moisture content of soils and vegetation, and

pollution quantities. The technology also has clear military and homeland-security applications, as it

enables identification of targets such as buildings and vehicles, evenwith attempts to camouflage. It is

also possible to detect and identify gas plumes such as those arising from leaks even when the gases

are invisible to the human eye. In fact, hyperspectral imaging was used following the attack on the

twin towers and the hurricane Katrina disaster to identify dangerous gas leaks, providing guidance and

protection to rescuers. See [4,2] for comprehensive overviews of recent hyperspectral image analysis

trends.

The standard linear mixing model for hyperspectral image processing and analysis is based on the

following general assumption: the spectral signature of each pixel results from the additive linear

combination of the spectral signatures of the constitutive materials present in this pixel (called end-

members). More precisely, assume we construct a matrix M such that each entry Mij of M is equal

to the reflectance2 of the ith pixel at the jth wavelength (i.e., each row Mi: of M corresponds to the

spectral signature of a pixel and each column M:i of M to an image at a given wavelength), then the

model reads

Mi: ≈
r∑

k=1
Uik Vk: ∀i,

where r is the number of materials present in the hyperspectral image. In fact, the spectral signature

of each pixel (Mi:, a row of M) is approximated by a nonnegative linear combination (with weights

Uik � 0, representing abundances) of end-members’ signatures (Vk: � 0) approximating the true

signatures of the constituent materials of the hyperspectral image. This corresponds exactly to the

nonnegativematrix factorization (NMF)model: givenM ∈ Rm×n+ and an integer r � min(m, n), solve

min
U∈Rm×r ,V∈Rr×n ||M − UV ||2F such that U � 0 and V � 0. (1.1)

However,NMF is typicallynotable toseparateall end-memberscorrectlybecauseof thenon-uniqueness

of the solution [19]. In order to improve NMF performances for hyperspectral image analysis, one

should incorporate prior information into the model, and take into account the characteristics of the

solutions to make the problemmore well-posed, e.g., sparsity of the abundance matrix and piecewise

smoothness of the spectral signatures [15], orthogonality [20],minimum-volume [22], and sum-to-one

constraint on the abundances [21].

Another approach introduced recently in [8] is based on the introduction of additional underap-

proximation constraints, enabling one to extract features in a recursive way, like PCA, but preserving

nonnegativity, like NMF. At the first step of the recursion, the following problem, called (rank-one)

nonnegative matrix underapproximation (NMU),

min
u�0,v�0

||M − uvT ||2F such that uvT � M, (1.2)

is solved, and a nonnegative residual matrix R = M− uvT � 0 is obtained. Hence the same procedure

can be applied on R. After r steps, this technique provides us with a rank-r NMF of the data matrixM.

Even though NMUwill feature a higher approximation error than NMF for the same factorization rank

r (because of the greedy approach), it has the following three advantages:

• The factorization rank r does not have to be known a priori: the recursion can go on as long as the

approximation error is too large (as for PCA). In contrast, NMF requires the rank r to be chosen a

priori, and the solutions have to be recomputed when the factorization rank is modified.

2 The reflectance is the fraction of the incident electromagnetic power that is reflected by a surface at a given wavelength.
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• Problem (1.2) inwell-posed in the sense that the optimal solution is, under somemild assumptions,

unique [10] (this is similar to PCA, where the optimal solution is unique if the singular values ofM

are distinct, see [12]).

• As for NMF, NMU leads to a separation by parts. Furthermore, the additional underapproximation

constraints enhance this property of the decomposition [8].

Moreover, it has been explained and experimentally shown how NMU is able to extract materials au-

tomatically in hyperspectral images [10,17,18]. Another advantage of NMU is that no parameters have

to be tuned (i.e., it is completely unsupervised), as opposed to most constrained NMF techniques (see

above). However, in some situations when blurring and noise, limited resolution, andmixedmaterials

are present, NMU can also have some difficulties in separating all end-members properly. A possible

way to overcome this is to combine NMU with standard clustering techniques, such as k-means or

nearest neighbor.

In this paper, we propose to incorporate sparsity into the NMUmodel, leading to improved perfor-

mances for hyperspectral image analysis in terms of end-members separation. The paper is organized

as follows. In Section 2, we introduce the problem of interest, namely sparse NMU. In Section 3, we

prove that sparse NMU is able to identify materials perfectly in ideal cases, and explain how it is able

to deal with non-ideal situations. In Section 4, we propose an algorithm to find approximate solutions

to sparse NMU and discuss its link to compressive sensing. In Section 5, we apply the new technique to

the analysis of HYDICE images, and show qualitatively that it is able to separate end-members better

than NMU. A preliminary and abbreviated conference version of this paper was published by IEEE in

the conference proceedings [11].

Notation. The set of m-by-n real matrices is denoted Rm×n; for A ∈ Rm×n, A:j is the jth column of A,

Ai: is the ith row of A, and Aij the entry at position (i, j), and A(I, J) is the submatrix of Awith row (resp.

column) indices in the set I (resp. J). For b ∈ Rm, we denote bi as the ith entry of b. The set Rm×n with

component-wise nonnegative entries is denoted Rm×n+ . The �0-‘norm’ of vector x denoted ||x||0 is the

cardinality of the set {i|xi �= 0}. The �2-norm of vector x is ||x||2 =
√∑

x2i ; the �∞-norm of vector x is

||x||∞ = maxi |xi|; the �1-norm of vector x is ||x||1 = ∑
i |xi|; the squared Frobenius norm of matrix

A is ||A||2F =
∑

i,j a
2
ij .

2. Enhancing sparsity in NMU

A possible way to enforce separation of the end-members is to add sparsity constraints on the

abundancematrixU in NMF [15]. In fact, eachmaterial is typically present in a relatively small number

of pixels and each pixel contains only a small number of constitutive materials. Thus U should be

sparse, since each entry Uik of U corresponds to the abundance of material k in pixel i. The reason

why the original NMU approach sometimes mixes several materials together is because the vector

u obtained when solving (1.2) is not sparse enough. In order to enforce sparsity, a �0-pseudo-norm
penalty term can be incorporated into the NMU model. Ideally, we then would like to solve at each

step of the recursion the following problem:

min
u�0,v�0

||M − uvT ||2F + μ||u||0 such that uvT � M, (2.1)

for some penalty parameterμ � 0. The �0-norm ||u||0 of u is equal to the number of non-zero entries

of u, hence incites u to be sparser. We will refer to this problem as sparse NMU.

There are threemain pitfalls in using sparse NMU in practice, each of themwill be addressed in the

subsequent sections:

1. Wewill see that sparse NMU is able to detect thematerials present in hyperspectral images in ideal

conditions, see Section 3. It is not clear however how sparse NMU can deal with blurry and noisy
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data. Even though no theoretical guarantees will be provided, we will demonstrate on numerous

selected examples that sparse NMU is able to deal with non-ideal conditions.

2. The original NMUproblem (1.2) was proved to be NP-hard [8], and it is not likely that the additional

penalty term in the objective function will make the problem easier. We will propose in Section 4

an algorithm to find approximate solution to sparse NMU using the �1-norm heuristic approach

combined with standard nonlinear optimization schemes. Because of NP-hardness, it is unlikely

that a guarantee of global optimality can be provided (unless P = NP). However, we will see in

the numerical experiments that our sparse NMU algorithm seems to be robust in the sense that it

generates very similar solutions for different initializations.

3. A good sequence of parameters μ has to be chosen. In fact, at each step of the recursion, one has

to decide on a penalty parameter μ and then solve the corresponding sparse NMU problem, see

Equation (2.1). For similar problems (such as sparse PCA and sparseNMF), a trial and error approach

is typically used in practice, 3 which will also be our framework. Notice that this is a crucial step,

which is not easily handled in practice. This issue will be discussed in Section 5, along with the

numerical experiments.

3. What can we expect from sparse NMU?

In this section, we analyze the sparse NMU formulation and characterize some of its properties.We

start with the ideal case, and then give some clues of how sparse NMU behaves in non-ideal cases.

3.1. Ideal case

In the ideal case, i.e., when each pixel of the hyperspectral image contains only one material (see

Assumption 1 below), the unmixing problem can be solved easily (simply compare the different spec-

tral signatures). However, it is still interesting to verify that our model is able to identify the different

materials in these settings (for example, NMF is not guaranteed to recover the materials because of

the non-uniqueness issues, see the introduction):

Assumption 1. Let M ∈ Rm×n+ correspond to a hyperspectral image with m pixels and n spectral bands,

i.e., Mij is equal to the reflectance of the ith pixel at the jth wavelength. Moreover, M is constituted of r

materials with linearly independent spectral signatures Hk: ∈ Rn+ 1 � k � r, and each pixel contains only

onematerial, i.e., for all i there exists k such that Mi: = Hk:. Therefore, there exists a matrixW ∈ {0, 1}m×r
with one and only one non-zero entry in each row such that M = WH = ∑r

k=1 W:kHk: and rank(M) =
r � min(m, n).

Theorem 1. Let M = WH be a matrix satisfying Assumption 1. Then there exists μ ∈ Rk+ such that the

following procedure:

1: R1 = M;

2: for k = 1 : r do

3: [u, v] = optimal solution of (2.1) with M = Rk and μ = μk ;

4: K = maxi(ui); U:k = u/K; Vk: = KvT ; Rk+1 = Rk − uvT .

5: end for

recovers the r original materials in r steps, i.e., U = W and V = H (up to a permutation).

Proof. We are going to prove that there exists μ ∈ R+ such that any optimal solution (u∗, v∗) of

(2.1) for matrix M satisfying Assumption 1 corresponds to one of the materials, i.e., u∗ = W:k and

v∗ = HT
k: for some 1 � k � r (up to a multiplicative factor). The first residual R will then be equal

to R = M − u∗v∗T = ∑
i �=k W:iHi:, and all rows of R corresponding to the first extracted material

3 Except if one wants a solution of a specific sparsity, in which case the parameter μ can be easily tuned in the course of the

optimization process.
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will be identically zero. Hence, the next step of the recursion reduces to the same problem with r − 1

materials, and, by recursion, the proof will be complete.

Without loss of generality, let us reorder the columns of W and the rows of H in such a way that:

||H1:||2 = ||H2:||2 = · · · = ||Hp:||2 > ||H(p+1):||2 � ||H(p+2):||2 � · · · � ||Hr:||2,
and ||W:1||2 � ||W:2||2 � · · · � ||W:p||2. Let then (u∗, v∗) be an optimal solution of (2.1), and note

Ik = {1 � i � m | Wik = 1} the set of pixels containing the kth material, with |Ik| = ||W:k||22,
and K = {1 � k � m | u∗k > 0} the index set of the non-zero entries of u∗. We observe that, for

μ < ||H1:||22,
1. The feasible solution (u = W:1, v = HT

1:) is strictly better than the trivial solution with

||M −W:1H1:||2F + μ||W:1||0 = ||M||2F − ||W:1||22(||H1:||22 − μ) < ||M||2F ,
hence u∗ �= 0 and v∗ �= 0 at optimality and K is non-empty.

2. The objective function can be decoupled into m independent terms:
∑m

i=1 ||Mi: − u∗i v∗T ||22 +
μ||u∗i ||0, we then have either

(a) u∗i = 0, and the corresponding term in the objective function is equal to ||Mi:||22, or
(b) u∗i > 0, and the corresponding term in the objective function is larger than μ.

Since u∗ is optimal, we then must have

u∗i = 0 for all i such that μ > ||Mi:||22.
Therefore, for ||H(p+1):||22 < μ, we have K ∩ Ik = ∅ for any p + 1 � k � r since u∗i = 0 for all i

such that ||Mi:||2 < ||H1:||2.
3. If K ⊆ Ik for some 1 � k � p (i.e., K contains only one material), then by optimality we have

v∗ = Hk: and u∗i = 1 i ∈ K (up to a multiplicative factor). Moreover, we must have K = Ik since

taking u∗i > 0 for i ∈ Ik is optimal for μ < ||Hk:||22 (see point 2. above).

It remains to show thatK does not contain two indices corresponding to twodifferentmaterials, i.e.,

that there does not exist i, j∈K such thatMi: �=Mj:. Assume thatK does contain two such indices, and let

us denote d=||M||2F+μ|K|. We can obtain a lower bound for the optimal value e∗ of (2.1) by relaxing

the underapproximation constraints: the optimal rank-one approximation of M(K, :) has an error of

||M(K, :)||2F−σ 2
1 (M(K, :)) [12] (where σ1(X) denotes the largest singular value of matrix X), hence

e∗ = ||M − u∗v∗T ||2F + μ|K| � d− σ 2
1 (M(K, :)).

Notice that σ 2
1 (M(K, :)) < σ 2

1 (M(K, :)) + σ 2
2 (M(K, :)) � ||M(K, :)||2F = |K|||H1:||22 by the linear

independence of the rows of H; in fact, this assumption implies that the second largest singular value

σ2(M(K, :)) of M(K, :) is positive. Moreover using the value of the objective function of the trivial

solution u = 0, we obtain the following upper bound

e∗ � d− μ|K|.
Choosing μ such that

σ 2
1 (M(K,:))
|K| < μ < ||H1:||22 leads to a contradiction.

Finally, taking μ such that

max

⎛⎜⎜⎜⎜⎜⎜⎝||H(p+1):||22, max

K ⊆ ∪1�k�pIk,

∃i, j ∈ K s.t. Mi: �= Mj:

σ 2
1 (M(K, :))
|K|

⎞⎟⎟⎟⎟⎟⎟⎠ < μ < ||H1:||22,
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implies that K contains only one material, i.e., K ⊂ Ik for some 1 � k � p.

The objective function value achieved by selecting a single material K = Ik for some 1 � k � p

is given by ||M||2F − |Ik|(||Hk:||22 − μ). The lowest value is attained by the materials with largest |Ik|
(= ||W:k||2F ); we therefore have q � p optimal solutions (up to multiplicative factor) for ||W:1||2F =
· · · = ||W:q||2F . This means that when there are different materials whose spectral signatures have the

same norm (i.e., ||H1:||2 = ||H2:||2 = · · · = ||Hp:||2) then solving sparse NMUwill recover any of the

materials contained by the largest number of pixels. �

It is worth noting that Theorem 1 also applies to sparse NMF, i.e., solving the following problem

min
u∈Rm+,v∈Rn+

||M − uvT ||2F + μ||u||0,

instead of (2.1) will also allow to recover the r materials in r steps. In fact, the proof of Theorem 1

does not consider explicitly the underapproximation constraint (but shows that the optimal solution

satisfies it automatically). However, in practice, we cannot get rid of this constraint because we are

dealing with non-ideal datasets.

More importantly, Theorem 1 shows that sparse NMU is a candidate for extracting materials in

hyperspectral images. At least it works potentially better than standard NMU, which might require

much more recursion steps to extract each material individually [10].

3.2. Non-ideal case

Theorem 1 sheds light on the choice ofμwhen solving the sparse NMUproblem: this choice is very

sensitive to the difference between the spectral signatures. The optimal solution also depends on the

abundance of each material present in the scene being imaged. In particular, we have observed that if

μ is chosen smaller than the value prescribed in Theorem 1, then a material whose spectral signature

does not have the largest norm but is contained by many pixels will be extracted (more precisely,

thematerial k for which ||W:k||22(||Hk:||22−μ) is maximum). Moreover, solving (2.1) approximately or

dealingwith noisy and/or blurry datamay lead tomixingmaterials together. It is interesting to observe

that apixelwhose spectral signature s is very similar to the spectral signaturehof theextractedmaterial

(more precisely such that minx�0,xh�s ||s − xh||22 + μ < ||s||22, cf. proof of Theorem 1) will also be

extracted in the first step of the sparse NMU recursion. Therefore, one can show that Theorem 1 still

holds if the spectral signaturesMi:’s are affected by a small noise level. Finally, the robustness of sparse

NMUwill be directly related to the differences between the spectral signatures and the distribution of

materials among the pixels: more precise characterization of its behavior in non-ideal cases is a topic

for further research.

Let us however show a simple example which illustrates the behavior of sparse NMU in non-ideal

conditions: we construct the matrix M = UV ∈ R9×12 with

U =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.9 0.1 0

0 0.9 0.1

0.1 0 0.9

0.8 0.1 0.1

0.1 0.8 0.1

0.1 0.1 0.8

0.5 0.5 0

0 0.5 0.5

0.50 0 0.5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, V =

⎛⎜⎜⎜⎜⎝
8 0 7 5 9 10 1 1 4 0 2 2

2 3 9 4 2 1 1 5 8 6 9 9

4 8 1 3 4 3 2 8 8 1 1 7

⎞⎟⎟⎟⎟⎠ . (3.1)
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Table 1

Basis elements obtained with NMF, NMU and sparse NMU.

NMF NMU Sparse NMU⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.11 0.90 0

0.90 0 0.43
0 0.23 0.90

0.11 0.81 0.11
0.80 0.10 0.39
0.10 0.21 0.84
0.50 0.49 0.16
0.50 0.06 0.68
0 0.57 0.48

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.43 0.90 0.02 0

0.80 0 0.90 0.08
0.64 0.11 0 0.90
0.53 0.79 0.01 0

0.88 0 0.76 0.02
0.75 0.06 0 0.76
0.71 0.41 0.36 0

0.90 0 0.29 0.27
0.70 0.35 0 0.24

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0.90 0

0.90 0 0

0.15 0.02 0.90
0 0.86 0

0.82 0 0

0.26 0 0.75
0.38 0.18 0

0.67 0 0.12
0 0.62 0.24

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The multispectral image corresponding to M therefore contains three end-members whose spectral

signatures are the rows of V , and the corresponding abundances for each pixel are given by the rows of

U. Observe that there is no pure pixel, even though some pixels contain mostly one material. Table 1

displays the basis elements obtained by NMF (using the accelerated HALS algorithm [9]), NMU and

sparse NMU (using the algorithm described in Section 4).

We observe the following:

• Even though NMF gives an optimal solution (i.e., ||M − UV ||F = 0) and is able to extract perfectly

the second material, it mixes the two other ones (because of non-uniqueness). We note that the

solution is very sensitive to initialization (sometimes it finds back the three materials, sometimes

it mixes all of them).

• NMUfirst extracts a positive factor,which is always the case for a positivematrixM. This amounts to

subtracting fromeach spectral signature the same component, see [10]. Then, the next three factors

of NMU provide a very good (soft) clustering of the pixels, being close to the original columns of

the abundance matrix U.

• Sparse NMU clusters the pixels containing mainly one material (i.e., abundance larger than 0.8)

in only one category (except for the 3rd and 6th pixel). It essentially considers low abundances as

noise (of course, this will strongly depend on the choice of the parameter μ). 4

We have observed that, in general, NMU and sparse NMU are less sensitive to initialization and

typically find solution with identical sparsity patterns.

4. Algorithm for sparse NMU

We now present an algorithm to find approximate solutions to Problem (2.1), i.e., sparse NMU.

Of course the �0-norm is very difficult to work with, and we propose to use the standard �1-norm
heuristic approach (see, e.g., [16]):

min
u�0,v�0,σ�0

||M − σuvT ||2F + μ||u||1
such that σuvT � M, (4.1)

||u||2 = 1, ||v||2 = 1.

The theoretical reason for this choice is the following. The convex envelope of a function f (x) over the
convex set X is the largest convex function g(x) such that g(x) � f (x) ∀x ∈ X . The convex envelope

of the �0-norm f (x) = ||x||0 over the set X = {x ∈ Rn | ||x||∞ � 1} is given by the �1-norm
g(x) = ||x||1 (see, e.g., [24]). That is, ||x||1 is the best convex function approximating ||x||0 from below

for ||x||∞ � 1.

4 We chose λ = (0.8 0.5 0.2), see Algorithm 1.
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4.1. Link with compressed sensing

Notice that problem (4.1) shares some similarities with compressed sensing (CS) [3,6,5]. When

noise is present, the optimization problem to be solved in CS is as follows

min
x∈Rq
||x||1 such that ||Ax − b||2 � ε, (4.2)

for some parameter ε � 0, b ∈ Rp and A ∈ Rp×q where p � q. Under some assumptions on the

matrix A (roughly, any subset of k columns of A can only be loosely correlated; where k depends on the

sparsity of the sought solution), one can show that solving (4.2) (which can be done efficiently with

convex optimization solvers) will indeed recover the sparsest solution x satisfying ||Ax − b||2 � ε.
Our problem (4.1) can be equivalently reformulated as

min
u∈Rm,||u||2=1,u�0

||u||1 such that f (u) � δ, (4.3)

for some δ depending onμ, andwhere f (u) = minv ||M−uvT ||2F such that uvT � M. Unfortunately, it

seems that applying the results from the CS literature to our formulation (4.1) would require extensive

investigation and might not apply to hyperspectral images. In fact,

1. The function f (u) is highly non-convex, and the feasible domain {u ∈ Rm | ||u||2 = 1, u � 0} is
also non-convex so that, if a proof of optimality would exist, it could be muchmore complicated to

establish. Moreover, even if one were able to show that any optimal solution of (4.3) is the sparsest

possible,wewould, in general, not be able to compute such a solution since Problem (4.3) isNP-hard

[8].

2. In hyperspectral images, the columns of matrix M are highly correlated (columns of M are images

of the same scene taken at different wavelengths) and m� n (m represents the number of pixels

while n is the number of spectral bands), so that even if one could generalize the results from CS

to (4.3), it would most likely not apply directly to our particular hyperspectral imaging application

of finding abundance maps using sparse NMU. However, �1 methods in unmixing and template

matching problems for hyperspectral imaging can be directly related to compressive sensing, as

shown in [14] and [13], respectively.

Hence, our use of the �1-norm as a surrogate for the �0-norm is, at this point, only a heuristic

motivated by the fact that the former is the convex envelope of the latter (see above). In the following,

we propose a simple approach to find good approximate solutions to (4.1).

4.2. Algorithm based on Lagrangian relaxation

Following the work of [8] (see also [10]), we propose a Lagrangian dual approach to solve Prob-

lem (4.1). Let us introduce Lagrangian dual variables� ∈ Rm×n+ associated with the underapproxima-

tion constraints and write the Lagrangian dual:

sup
��0

L(�), (4.4)

where L(�) is the Lagrangian dual function:

L(�) = min
σ,u,v�0,||u||2=||v||2=1

||M − σuvT ||2F + μ||u||1 − 2
〈
�,M − σuvT

〉
. (4.5)

Problem (4.4) is a non-smooth convex optimization problem (see, e.g., [1]) and can be solved using the

following subgradient scheme [25]:

0. Initialize �(0). Then for k = 0, 1, 2, . . .
1. Find a solution (σ, u, v) of (4.5) for � = �(k).
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2. Update �(k+1)← max
(
0, �(k) + αk(σuvT −M)

)
.

If the Lagrangian relaxation subproblems (4.5) are solved exactly at each step and, for example, αk =
1/k, then the convergence of the above scheme is guaranteed [1].

4.3. Solving the Lagrangian relaxation

Unfortunately, the Lagrangian relaxation Problem (4.5) is NP-hard [8]. We then propose to use a

simple exact block-coordinate descent scheme to find good solutions to Problem (4.5). This amounts

to successively optimizing over one bock of variables while keeping the other fixed:

0. Initialize (σ, u, v) (see Section 4.4 below). Then for k = 0, 1, 2, . . .
1. u← argminu�0,||u||2=1 ||(M −�)− σuvT ||2F + μ||u||1.
2. v← argminv�0,||v||2=1 ||(M −�)− σuvT ||2F .
3. σ ← argminσ�0 ||(M −�)− σuvT ||2F = max(0, uT (M −�)v).

One advantage of this approach is that the optimal solutions of these subproblems can be written

in closed form (cf. Algorithm 1 to follow5 ) and are uniquely attained when σ , u and v are different

from zero (which guarantees the limit points to converge to a stationary point [23]). In practice, we

observed that updating only σ , u and v once between each update of � seems to give good results.

This approach is implemented in Algorithm 1.

4.4. Initialization and choice of regularization parameter μ

At each step of the recursion, variables σ, u, v and � have to be initialized. Following [10], we

initialize

1. Thevariables (σ, u, v)with anoptimal nonnegative rank-one approximation (σ ∗, u∗, v∗)ofM � 0.

This can be computed, for example, using the power method [12].

2. The Lagrangian dual variables�with the nonnegative part of the residual, given bymax
(
0,−(M−

σ ∗u∗v∗T )
)
.

The next update of u would then be given by (before projection onto the �2-ball)

argminu�0 ||M −�− σ ∗uv∗T ||2F + μ||u||1 = max
(
0, σ ∗(M −�)v∗ − μ

)
.

Therefore parameter μ must be chosen smaller than a = ||σ ∗(M − �)v∗||∞, otherwise u is set to

zero at the first step. Introducing parameter λ such that μ = λa, we then must have λ ∈ [0, 1).
Notice that the value of σ can only decrease in the course of the algorithm. In fact, σ is equal

to uTMv with ||u||2 = ||v||2 = 1 hence σ is smaller than the largest singular value σ1(M) of M

since, by definition, σ1(M) = max||u||2=||v||2=1 uTMv [12]. This maximal value σ1(M) is attained with

our initialization. Therefore, if the value of μ is kept fixed, it often happens that it becomes larger

than ||σ(M − �)v||∞ and u is then set to zero. We found it appropriate to change the value of μ
proportionally to σ (i.e., if σ is multiplied by a factor, μ is multiplied by the same factor). This is

equivalent to updating u as done in steps 6 and 10 of Algorithm 1. As a safety procedure, if we have

max
(
0, σ (M −�)v

)
< μ at some iterate, we reduce the value of μ, see steps 7–9 of Algorithm 1.

4.5. Lower and upper bounds on the sparsity of u

In case our parameter λ is chosen too large (resp. too small), we might obtain a solution which is

too sparse (resp. too dense), hence containing only a very small (resp. large) subset of the pixels. In

5 The code is available at http://sites.google.com/site/nicolasgillis/.
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Algorithm 1 Sparse NMU

Require: M ∈ Rm×n+ , r ∈ N, λ ∈ [0, 1)r , 0 � δ < 	 � 1, maxiter.

Ensure: (U, V) ∈ Rm×r+ × Rr×n+ s.t. UV � M with U sparse.

1: for k = 1 : r do

2: [σ, u, v] = optimal rank-one approximation(M);

3: U(:, k)← u; V(k, :)← σ vT ; �← max(0,−(M − σuvT ));
4: μ = λk||(M −�)v||∞;

5: for p = 1 : maxiter do

6: u← max
(
0, (M −�)v

)
;

7: if ||u||∞ � μ then

8: μ← 0.99||u||∞;

9: end if

10: u← max(0, u− μ); u← u/||u||2;
11: if ||u||0 � δm then

12: μ← 0.95μ;

13: else if ||u||0 > 	m then

14: μ← 1.05μ;

15: end if

16: v← max
(
0, (M −�)Tu

)
; v← v/||v||2;

17: σ ← uT (M −�)v;

18: if σ > 0 then

19: U(:, k)← u; V(k, :)← σ vT ;

20: �← max
(
0, �− 1

p+1 (M − U(:, k)V(k, :))
)
;

21: else

22: �← 0.95�; v← V(k, :)T ;
23: end if

24: end for

25: M← max(0,M − U(:, k)V(k, :));
26: end for

fact, the support of factor u should ideally be the set of pixels containing a single material. Therefore,

if available or if one is only interested in clusters whose number of pixels is in a given interval, a lower

and upper bound on the sparsity of u can be imposed. We define new parameters 0 � δ < 	 � 1

as these lower and upper bounds in percent of the total size of the image. If this lower (resp. upper)

bound is reached for some iterate u, the value of parameter λ is decreased (resp. increased), see steps

11–15 of Algorithm 1. For λ = δ = 0 and 	 = 1, Algorithm 1 reduces to the algorithm from [10].

Moreover, it has exactly the same computational cost, with O(Kmnr) operations where K = maxiter.

5. Numerical experiments

In this section, we qualitatively assess the good performance of sparse NMU on two real-world

datasets for which the ground truth is not available (hence a rigorous quantitative comparison is not

possible). We use 100 iterations of Algorithm 1 to solve the sparse NMU problems, i.e., maxiter = 100,

and we visually adjusted the value of parameter λ (see also Section 5.1.2).

5.1. San Diego airport

The San Diego airport hyperspectral image is taken from HYper-spectral Digital Imagery Collec-

tion Experiment (HYDICE) air-borne sensors. It contains 158 clean bands, and 400 × 400 pixels for

each spectral image (i.e., M ∈ R160000×158+ ), see Fig. 1. There are four basic types of materials under
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Fig. 1. San Diego airport.

Fig. 2. Abundance maps obtained with a manually adjusted nearest neighbor technique [7] (left) and with sparse NMU (right).

consideration: road surface, roofs, trees and grass. Moreover, there are (mainly) three different types

of road surfaces including boarding and landing zones, parking lots and streets. The spectral signatures

of the end-members are shown on Fig. 1 and have been computed using a manually adjusted nearest

neighbor technique from the HYPERACTIVE toolkit [7], see the left side of Fig. 2 for the corresponding

abundance maps.

For this dataset, standard NMU is not able to separate the materials properly, see Fig. 3: it extracts

materials together (e.g., the grass, the trees and the roofs in the second basis element) and cannot
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Fig. 3. First four basis elements obtained with NMU.

Fig. 4. First six basis elements obtained with sparse NMU with λ = (0.2 0.3 0.2 0.2 0.2 0.05), δ = 0.01, and 	 = 1. Left to right

and top to bottom: roofs, road type 1, grass, road type 2, trees, road type 3.

identify them individually (only the fourth basis element corresponds to the different types of road

surfaces).

5.1.1. Spectral unmixing using sparse NMU

Fig. 4 displays the abundancemaps (i.e., rows ofmatrixU) extractedwith sparseNMU,which is able

to extract the differentmaterials: roofs in the first basis element, road type 1 in the second, grass in the

third, road type 2 in the fourth, trees in the fifth and road type 3 in the sixth (after which we stopped

the recursion since the six main clusters were identified). It is interesting to observe the ordering

of the extracted materials: it follows exactly the theoretical results obtained in Theorem 1, i.e., the

materials whose spectral signature have larger norm are extracted first (see Fig. 1). As mentioned in

the introduction, the recursive approach leads to higher approximation errors: the normalized error
||M−UV ||F||M||F for r = 6 of NMF is 4.4% (using the accelerated HALS algorithm), of NMU is 6.8% and of

sparse NMU is 13.2%.
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Fig. 5. Spectral unmixing with sparse NMU.

Fig. 6. Sparsity of the first basis element (i.e., 1− ||u||0/m ∈ [0, 1]) with respect to λ, and for different values of δ (	 = 1).

Fig. 2 (right) shows the abundance maps obtained with the sparse NMU decomposition. Fig. 5

displays the spectral signatures corresponding to these six extractedmaterials.We observe that sparse

NMU and the nearest neighbor technique perform similarly, and are both able to separate all end-

members properly (see also Fig. 1).

5.1.2. Choice and sensitivity of λ
In practice, the parameter λ has to be tuned in order to extract the end-members properly: this

requires some (human) supervision (as opposed to standard NMUwhich is completely unsupervised).

This procedure can be rather long and expensive, especially if the dataset is large. In practice, we found

that an efficient way for finding proper values for λ is to first run the algorithm on a reduced “training"

dataset, considering only a subset of the columns of the inputmatrixM. For example, for the San Diego

image, we kept ten wavelengths equally spaced. In all the tests, we observed that good values for the

parameter λ for the reduced dataset also lead to good values for the full dataset.
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Fig. 7. Abundance maps for the first basis element extracted by sparse NMU with δ=0.01 and for different values of λ (from left to

right): 0 (original NMU), 0.1, 0.2 and 0.4.

Fig. 8. Larger values of λ4 (from 0.2 to 0.3) in sparse NMU leads to the splitting of the second type of road surface into two distinct

clusters (left) with different spectral signatures (right).

To illustrate the sensitivity of sparse NMU with respect to λ, Fig. 6 displays the evolution of the

sparsity of the first basis element extracted by sparse NMU with respect to λ, and for different values

of δ. For λ larger than 0.2, the sparsity of the solution is stabilizing. For δ = 0 and δ = 0.01, the
solution hence obtained corresponds to the roofs, see Fig. 7; for δ = 0.2, it corresponds to the roofs

and the road type 1 because the first basis element is inclined to contain at least 20% of all pixels.

Another interesting observation is that if we increase the parameter λ at the fourth step of the

sparse NMU recursion (from 0.2 to 0.3), then the second type of road surface is separated into two

different clusters as shown on Fig. 8. We observe that all types of road surface have a very similar

spectral signature, the main difference being the intensity of the reflectance.

5.2. Urban dataset

The HYDICE Urban hyperspectral image6 contains 210 spectral bands, and the data cube has di-

mension 307 × 307 × 210. The Urban data is mainly composed of 6 types of materials (road, dirt,

trees, roofs, grass andmetal) as reported in [14] (see Fig. 9) and our implementation of NMUwas quite

successfully able to detect these six materials, as reported in [10].

In order to make the problem more difficult, we use a subset of only five bands, corresponding to

the following wavelengths: 412, 610, 1102, 2003 and 2382nm (i.e., M ∈ R94249×5+ ). NMU is no longer

able to extract all materials in this situation, see Fig. 10. In fact, it mixes the grass with the trees in the

second basis element and the road and dirt in the third. Fig. 11 displays the basis elements obtained

with sparse NMU which is able, even with only five bands, to extract each material individually. As

mentioned previously, sparse NMU has a larger approximation error: for r = 8, the normalized error
||M−UV ||F||M||F of NMF is zero (since r is larger than n), of NMU is 4.2% and of sparse NMU is 6.16%.

6 Available at http://www.agc.army.mil/hypercube/.
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Fig. 9. Urban dataset.

Fig. 10. NMU basis elements obtained for the Urban hyperspectral image with only five bands.

Let us compare sparse NMUwith the following standard procedure7 : the 6 end-members (i.e., the

rows of matrix V) were obtained using the N-FINDR5 algorithm [26] plus manual adjustment from

[14] (see right image in Fig. 9), and the abundancematrix was computed as the optimal solution of the

nonnegative least squares problem argminU�0 ||M − UV ||2F , see the left image in Fig. 12. We observe

that sparse NMU, although using only five bands, is able to perform a rather good clustering, compa-

rable to the N-FINDR5 based technique (which used all the 162 clean bands): only the road remains

rather difficult to extract properly and is still mixed up with some dirt and roofs.

Finally, wewould like to point out that, even thoughwe are using a nonlinear optimization scheme,

sparse NMU is quite robust to different initializations (as NMU is [8]). In fact, we have also run sparse

NMU with randomly generated initial matrices (instead of the best rank-one approximation of M, cf.

step 2 of Algorithm 1) on the Sand Diego Airport and the Urban datasets, and have obtained similar

results (which are typically difficult to differentiate visually).

7 The nearest neighbor technique used for the San Diego image in the previous section was not able to perform a good clustering.
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Fig. 11. Sparse NMU basis elements obtained for the Urban hyperspectral image with only five bands, with

λ = (0 0.25 0.2 0 0.1 0.1 0.55 0), δ = 0 and 	 = 1.

Fig. 12. Abundancemaps based on NFINDR5 algorithmwith all spectral bands (left), and based on sparse NMUwith only five spectral

bands (right).
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6. Summary and further work

In this paper we have presented away to incorporate sparsity into the NMU problem, with applica-

tions tomaterial identification provided by abundancemaps for hyperspectral images. Our approach is

based on the use of the standard �1-norm sparsity inducing term added to the minimization problem.

We then experimentally showed that sparse NMU is able to identify materials in situations where

standard NMU is not, because sparsity enhances separation of the end-members.

As global convergence and recovery guarantee results are largelyunknown for sparseNMU,wehope

the promising results in this paper will motivate future theoretical studies. We are also interested in

the addition of other penalization terms in order to take other prior information into account, e.g.,

spatial information or piecewise smoothness of the spectral signatures [15]. In addition, we have in

mind testing sparseNMUondifficult data obtained fromcompressive sensing, using e.g., data collected

by the Coded Aperture Snapshot Spectral Imaging (CASSI) system studied in [27].
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